Time: 3 hours

Max score: 50

Answer any **5** questions.

1. (a) Show that the extension \mathbb{F}_{p^n} over \mathbb{F}_p is a simple extension, for every prime p and for every $n \in \mathbb{Z}^+$.

(b) Show that the polynomial $x^{p^n} - x$ is precisely the product of all the distinct monic irreducible polynomials in $\mathbb{F}_p[x]$ of degree d, where d runs over all divisors of n. (5+5)

2. (a) Show that a finite extension K/F is a simple extension if and only if there are only finitely many subfields of K containing F.

(b) Let p be a prime. Let $K = \mathbb{F}_p(X, Y)$ be the field of rational functions in two variables X and Y, and $F = \mathbb{F}_p(X^p, Y^p) \subset K$. Using part (a) above, or otherwise, show that K/F is not a simple extension. (5+5)

- 3. (a) Prove that there exists a subfield E of a cyclotomic field such that Gal(E/Q) ≃ Z₁₄
 (b) Let K = Q(ζ), where ζ = cos(^{2π}/₁₇) + sin(^{2π}/₁₇)i. Then
 (i) Prove that K contains a unique subfield L such that [L : Q] = 8.
 - (ii) Prove that L is a Galois extension of \mathbb{Q} .

(iii) Find an element $\alpha \in L$ such that $L = \mathbb{Q}(\alpha)$. (5+5)

- 4. (a) Let f(x) ∈ F[x] be a separable polynomial of degree n, where char(F) ≠ 2. Show that the Galois group of f(x) is a subgroup of the alternating group A_n if and only if the discriminant of f(x) is the square of an element of F.
 (b) Show that the Galois group of f(x) = x⁵ 6x + 3 over Q is S₅. (5+5)
- 5. Let n ∈ Z⁺. Let F be a field such that of char(F) does not divide n and F contains the nth roots of unity.
 (a) Show that for any a ∈ F, the extension F(ⁿ√a) over F is a cyclic extension of degree dividing n.
 (b) Prove that any cyclic extension of degree n over F is of the form F(ⁿ√a) for some a ∈ F.
- 6. Find a polynomial f(x) of degree 7 whose Galois group over \mathbb{Q} is S_7 . (10)
